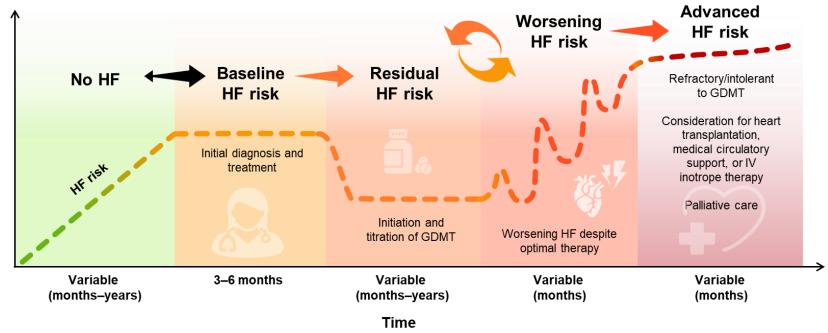
Cardiovascular Gene Therapy

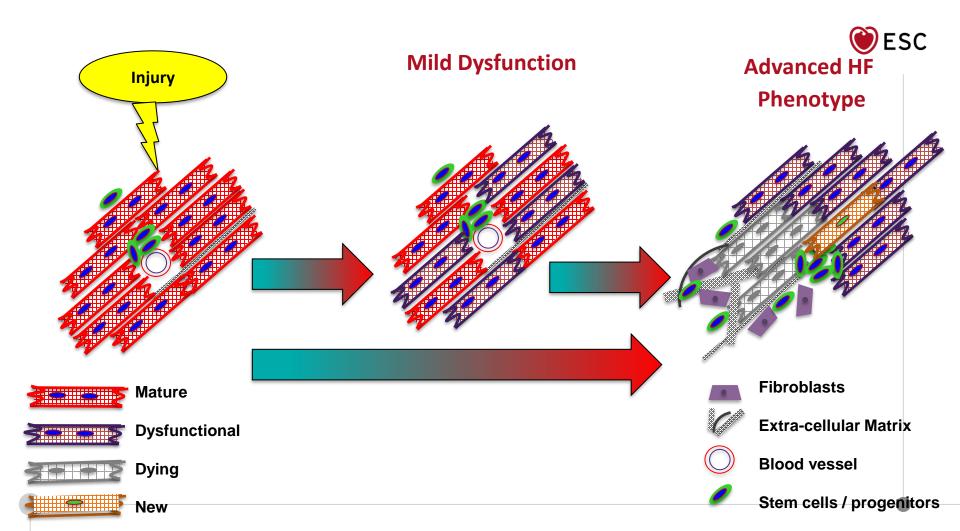
Efficient gene delivery to the heart? What are the best targets?

Roger J. Hajjar MD Gene & Cell Therapy Institute, Mass General Brigham February 1, 2024

Disclosures

- Co-founder: Nanocor/AskBio, Medera Biopharma, Ring Therapeutics, Sail Biomedicines, VJ Bio
- SAB/Consultant: RNATICs, Ampersand


TARGETING CARDIAC DISEASES BY GENE THERAPY

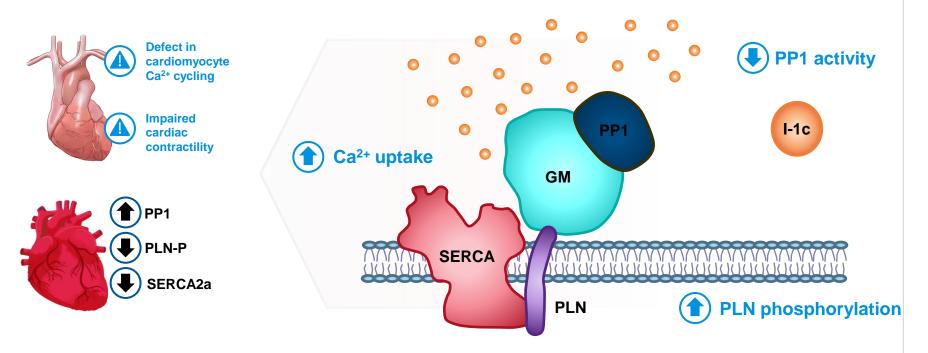
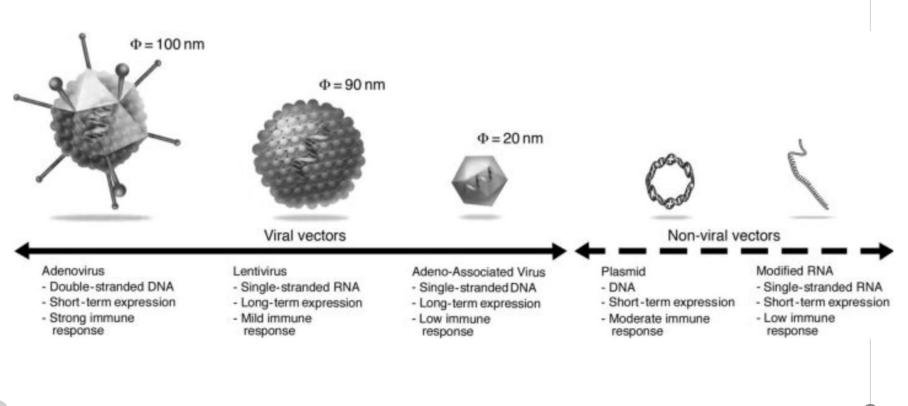


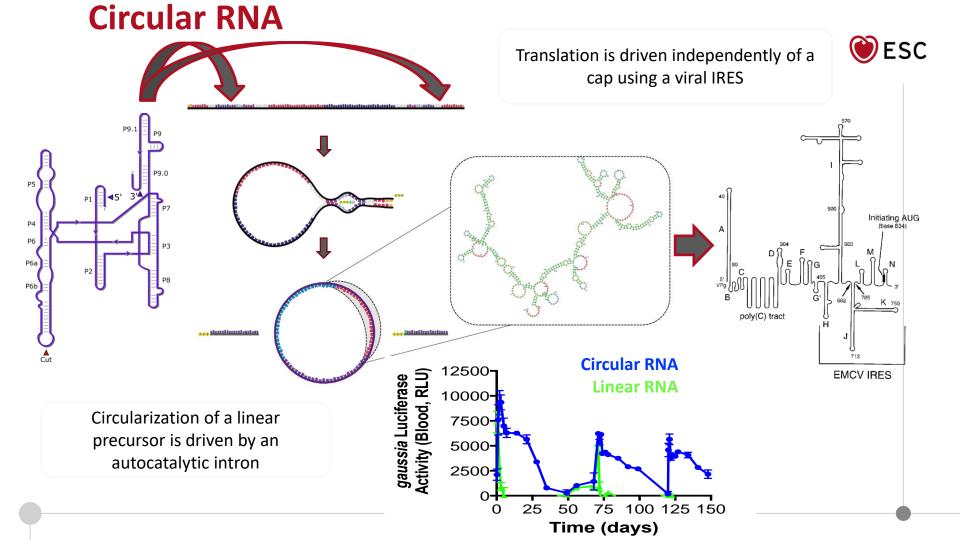
Cardiomyopathies & Congestive heart failure in need of innovative therapies

Despite current standard of care, patients continue to progress to advanced HF

Clinical risk

Abnormal calcium cycling, Decreased SERCA2a and increased PP1 contribute to impaired cardiac contractility in failing hearts


Figure adapted from Watanabe S, et al. J Am Coll Cardiol 2017;70:1744–1756 1. Watanabe S, et al. J Am Coll Cardiol 2017;70:1744–1756; 2. Marks AR. J Clin Invest 2013;123:46–52; 3. Nicolaou P & Kranias EG. Front Biosci (Landmark Ed) 2009;14:3571–3585

Disclaimer: AB-1002 is an investigational product and is not approved by the FDA, EMA, or any other health authority

Vectors For Cardiovascular Applications

AAV Vectors

Ad5

• Nonpathogenic

AAV5

 ${\mathbb Z}$

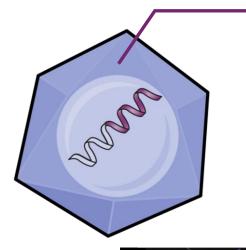
AAV:

transgene

rAAV

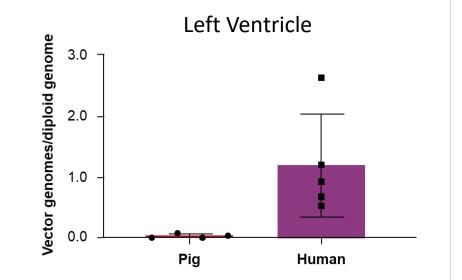
transgene

(4.7-5.1 kb)


AAV13 AAV12

- Helper dependent parvovirus
- rAAV contains no viral genes
- 20 nm icosahedral particle
- Capsid composed of three related proteins
- Results in long-term expression
- Broad distribution to the myocardium
- Different serotypes have different tropisms

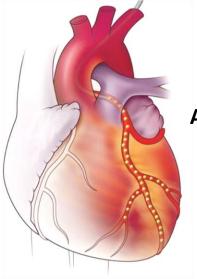
most commonly used serotype	Heart	Brain	Lung	Eye	Liver	Muscle	Pancreas
AAV1	*	*		*	***	***	*
AAV2		*		***	*		*
AAV5		*	***	*	*		
AAV6			**		*	*	
AAV7		*		*	**	***	
AAV8		**		***	***		*
AAV9	***	***	*	*	***	***	*


ESC

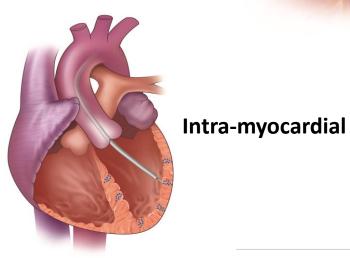
Novel AAV Capsid: High Cardiac Tropism

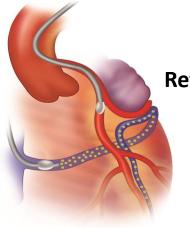
AAV2i8 VECTOR CAPSID

- Nonpathogenic, chimeric cardiotropic AAV2/AAV8 vector capsid
- Readily traverses the vasculature and selectively transduces cardiac muscle tissues with high efficiency in mice^{2,3}
- Markedly reduced hepatic tropism²

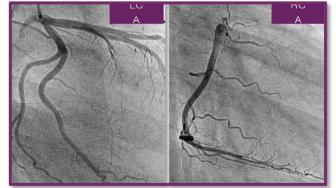

AAV2i8, adeno-associated virus AAV2/AAV8 vector capsid; CMV, cytomegalovirus; DNA, deoxyribose nucleic acid; I-1c, constitutively active inhibitor-1; EMA, European Medicines Agency; FDA, US Food and Drug Administration.

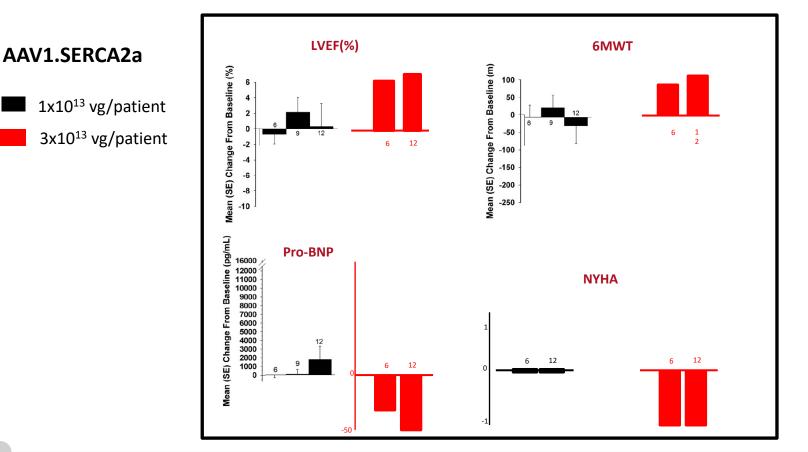
1. Pathak A, et al. Circ Res. 2005;96(7):756-766. 2. Asokan A, et al. Nat Biotechnol. 2010;28:79-82. 3. Ishikawa K, et al. Circ Res. 2018;123:601-613.



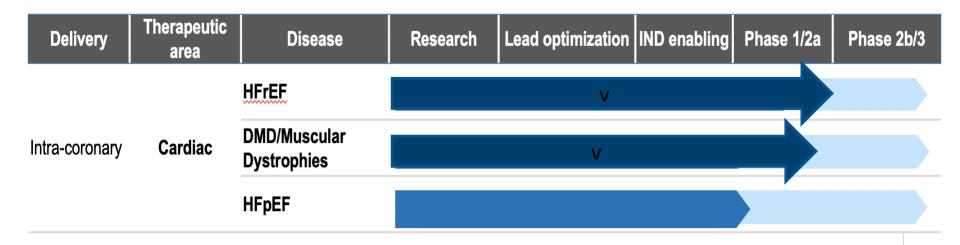

Delivery Methods

Retrograde

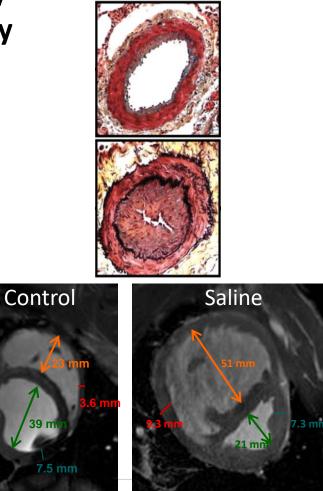

Intravenous

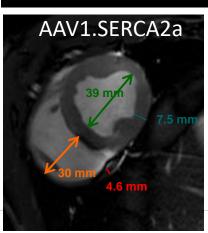

Administration Via Percutaneous Intracoronary Artery Infusion WESC

- Antegrade epicardial coronary artery infusion over 10 minutes
- 60 mL divided infusions based on dominance and coronary artery anatomy
- Delivered via commercially available angiographic injection system and guide or diagnostic catheters



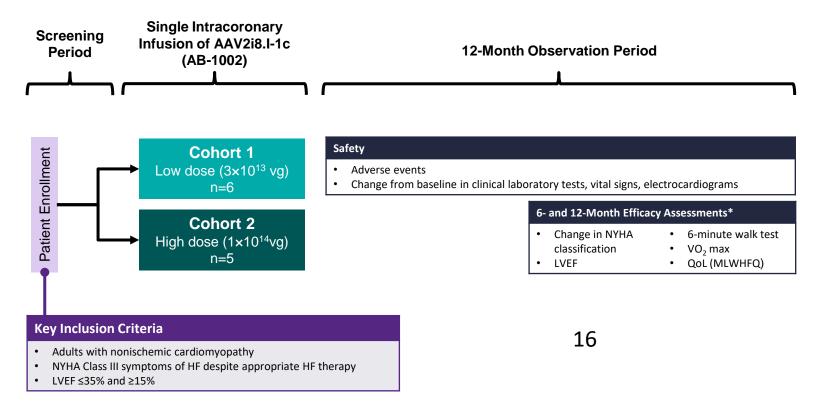
Significant Clinical Efficacy of AAV.SERCA2a in HF patients with Class III/IV & LVEF<35%: Effects of Dose Escalation


Three Ongoing Trials: Dose Escalation AAV1.SERCA2a



Gene Therapy for Pulmonary Hypertension

Short axis



Inhaled Gene Therapy for Pulmonary Hypertension

Phase 1 Clinical Gene Therapy Trial for the Treatment of Heart Failure Using AAV2i8 (NCT04179643)

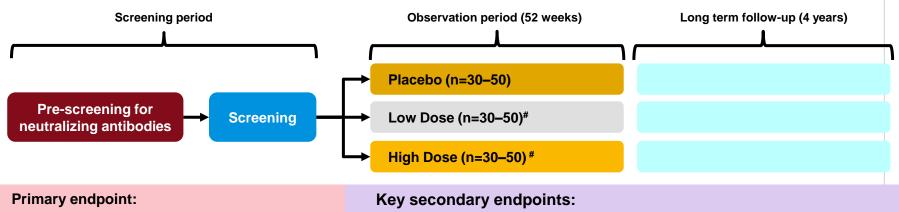
*This phase 1 study was not powered to detect statistical significance for changes in these efficacy assessments. In Cohort 1, Patient 2 can be treated 30 days after Patient 1, and Patient 3 can be treated 14 days after Patient 2. In Cohort 2, patients are treated sequentially after 14 days. HF, heart failure; LVEF, left ventricular ejection fraction; MLHFQ, Minnesota Living With Heart Failure® Questionnaire; NYHA, New York Heart Association; QoL, quality of life; vg, viral genomes; VO₂ max, maximal myocardial oxygen consumption. Alvisi M, et al. Poster presented at: European Society of Gene & Cell Therapy 29th Annual Congress; October 11-14, 2022; Edinburgh, Scotland. Abstract P670.

Single-Dose Administration of AAV2i8.I-1c resulted in clinically meaningful improvements in Key efficacy parameters

ESC

		NYHA FC		LVEF		MLHFQ		VO ₂ max			6MWT					
	Patient	BL	6 Mo	12 Mo	BL	6 Mo	12 Mo	BL	6 Mo	12 Mo	BL	6 Mo	12 Mo	BL	6 Mo	12 Mo
t1 se	1	3	2	2	37.5	39.0	48.0	80.0	38.0	47.0	12.3	13.2	-	314.0	365.8	-
Cohort 1 Low dose	2	3	1	1	29.0	44.5	51.0	-	-	-	14.3	14.0	15.8	381.0	321.5	419.0
ٽ ٽ	3	3	2	2	34.0	41.0	40.0	51.0	48.0	39.0	7.9	7.0	13.0	132.5	219.5	260.0
	4	3	NA	NA	18.0	NA	NA	43.0	NA	NA	19.8	NA	NA	454.0	NA	NA
se se	5	3	2	2	21.0	28.2	28.0	16.0	6.0	11.0	15.8	15.2	13.4	362.7	416.1	406.2
Cohort 2 High dose	6	3	2	2	19.0	35.0	35.0	79.0	46.0	26.0	25.1	20.5	20.6	438.9	457.2	466.3
S ⊟	7	3	3	3	20.5		29.0	64.0	26.0	49.0	16.2	-	14.5	384.0	-	371.8
	8	3	3	3	25.0	31.0	42.0	88.0	85.0	93.0	18.0	19.1	19.6	325.0	326.1	255.0

Clinically meaningful changes from baseline*


Worsening
Stabilization
Improvement

Henry et al, 2023, AHA

First Patient has been enrolled in GenePHIT is a phase II, adaptive, randomized, double-blind, placebo-controlled, multicenter trial

Objective: To explore the efficacy and safety of AAV2i8.I-1c vs placebo in patients with nonischemic cardiomyopathy and NYHA class III heart failure

1. CV death

Hierarchical evaluation

- 2. NYHA functional class change from baseline
- 3. LVEF change from baseline
- 4. VO2 max change from baseline
- 5. 6MWT change from baseline

- Functional status (NYHA classification, LVEF, VO2
 - max, 6MWT) and hospitalizations (number of and time to first admission)
- Echocardiographic assessments and NT-proBNP
- QoL assessments

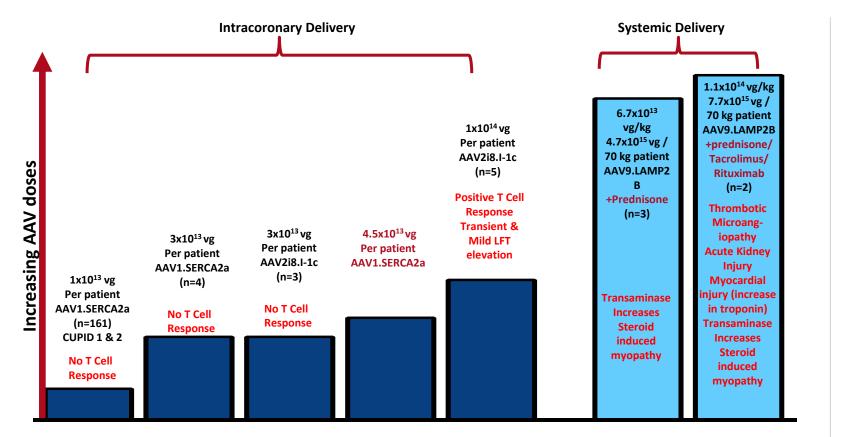
- Incidence of cardiac transplantation
- Incidence of LVAD implantation
- Number of HF hospitalizations
- All-cause mortality

Pathway Cardiac Diseases Leveraging AAV or Adenoviral Vectors

Disease	Phenotype	Overall Prevalence	Target Gene	AAV	Mode of Delivery	Clinical Trial	
HFrEF (non- Ischemic)	NYHA Class III, LVEF<35%	~0.4 M US ~0.4 M EU	I-1c	AAV2.8	Intracoronary	Dose escalation Phase 1b trial completed Phase 2 trial started	
HFrEF (ischemic & non-ischemic	NYHA Class III & IV, LVEF<35%	~0.6 M US ~0.6 M EU	SERCA2a	AAV1	Intracoronary	Dose Escalation Phase 1b Trial	
HFpEF	LV>40%, PCWP>25 mmHg	~0.8M in US ~0.8M in EU	SERCA2a	AAV1	Intracoronary	Dose escalation Phase 1b Trial	
Chronic Ischemic heart disease	Chronic angina	~1M in US ~1M in EU VEGF Adenovirus		Adenovirus	Surgical direct Intramyocardial	Dose escalation Phase 1 Trial completed	

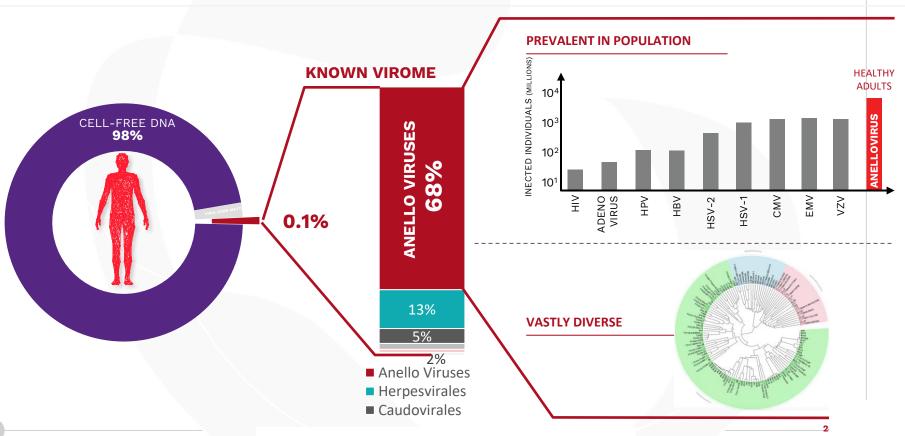
Hereditary Cardiac Indications Leveraging AAV Vectors

Disease	Phenotype	Overall Prevalence	Causative Gene	AAV	Mode of Delivery	Clinical Trial
Danon	X-linked recessive Hypertrophic cardiomyopathy	15-30k (US+EU)	LAMP2	AAV9	Intravenous	Phase 1 completed with two high doses in adult and pediatric patients Pivotal Phase 2 to start
Genetic Hypertrophic Cardiomyopathy	Severe Hypertrophy of the walls of the ventricles	>500k (US, total HCM)	MYBPC3	AAV9	Intravenous	Phase 1 Trial intravenous. High dose
Arrhythmogenic right ventricular cardiomyopathy (ARVC)	Arrhythmias and right ventricular dyskinesis. Majority due to PKP2 mutations	~100K in US	PKP2	AAVrh10 AAVrh74	Intravenous	Dose escalation Phase 1 Trial intravenous. High dose
Freidreich's Ataxia	Autosomal Recessive neurological & muscular Disorder affecting the heart	~6,000 in US	FXN	AAVrh10	Intravenous	Dose escalation Phase 1 Trial intravenous. High dose
Duchenne Cardiomyopathy	Autosomal Dominant, LVEF<40%	~25,000 in US	SERCA2a	AAV1	Intracoronary	Dose escalation Phase 1 Trial


AAV Related Toxicities

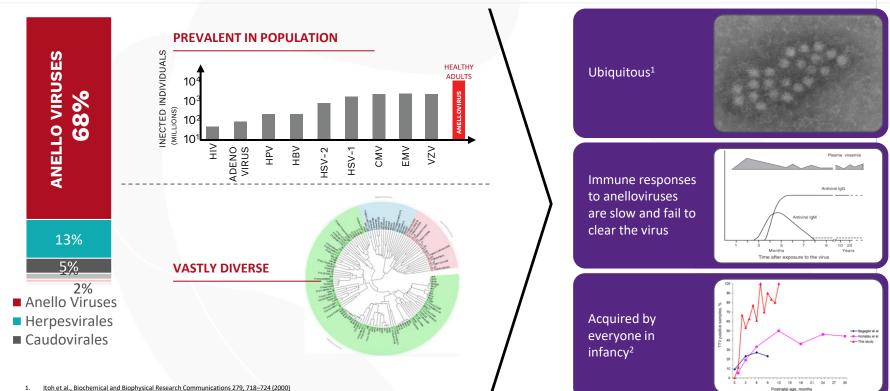
ΤΟΧΙCΙΤΥ	Adverse Events	AAV serotype	Mode of Delivery		
Hepatotoxicity	Elevated Liver Function Tests	All serotypes	Systemic, Intracoronary		
	Serious Liver Injury	AAV8, AAV9	Systemic		
	Liver Failure	AAV8, AAV9	Systemic		
Thrombotic	Thrombocytopenia	AAV9	Systemic		
Microangiopathy	Hemolytic Anemia	AAV9	Systemic		
	Acute Kidney Injury	AAV9	Systemic		
	Complement Activation	AAV9	Systemic		
	Thrombotic Microangiopathy	AAV9	Systemic		
Neurotoxicity	Dorsal Root ganglia Neuronal Loss	AAV9	Intrathecal		
	Procedure related Neuronal Injury	AAV2	Intracranial		
	Abnormal T2 hypersensitivities on MRI	AAV2, AAV9	Intracranial		

Delivery of AAV and T Cell Response



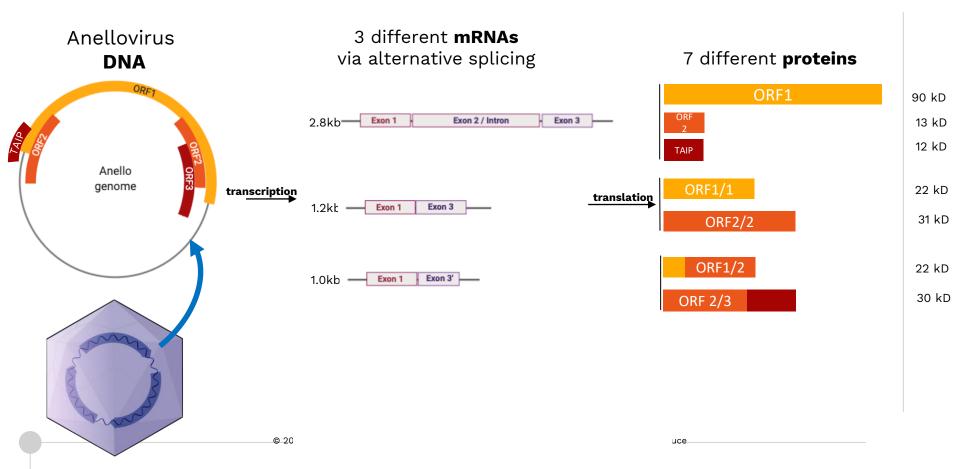
NEXT Generation vectors

- Capsids with high cardiac tropism
- De-targeting the liver
- Resistant to antecedent neutralizing antibodies
- Novel vector systems

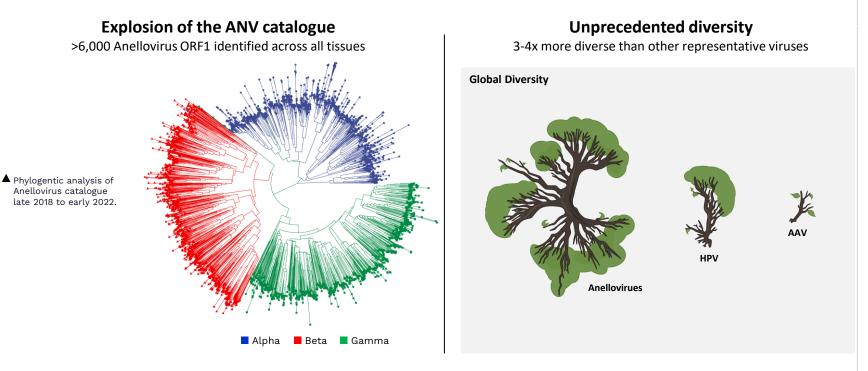

Anelloviruses constitute a key component of the human virome

ESC

Anelloviruses constitute a key component of the human virome



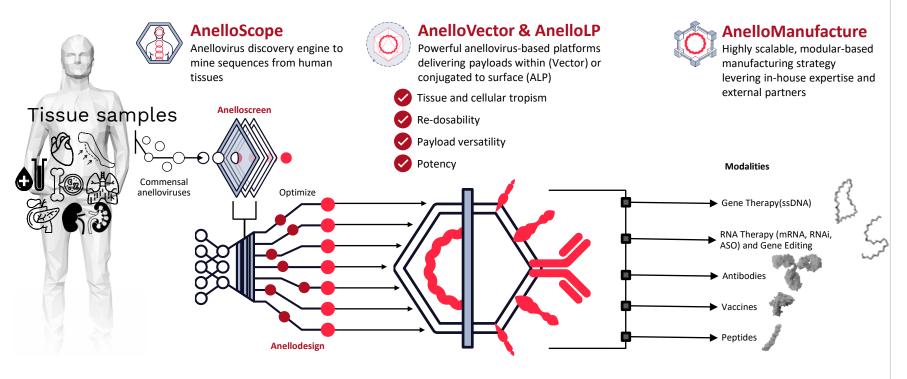
Itoh et al., Biochemical and Biophysical Research Communications 279, 718-724 (2000)


- Tyschik et al. Virol J 2018 May 30;15(1):96. 2.
- Rezahosseini et al Transplantation Reviews; Volume 33, Issue 3, July 2019, Pages 137-144 з
- Maggi and M. Bendinelli, 2009 TT Viruses: The Still Elusive Human Pathogens, © Springer Verlag Berlin Heidelberg 2009

Anatomy of the anellovirus genome

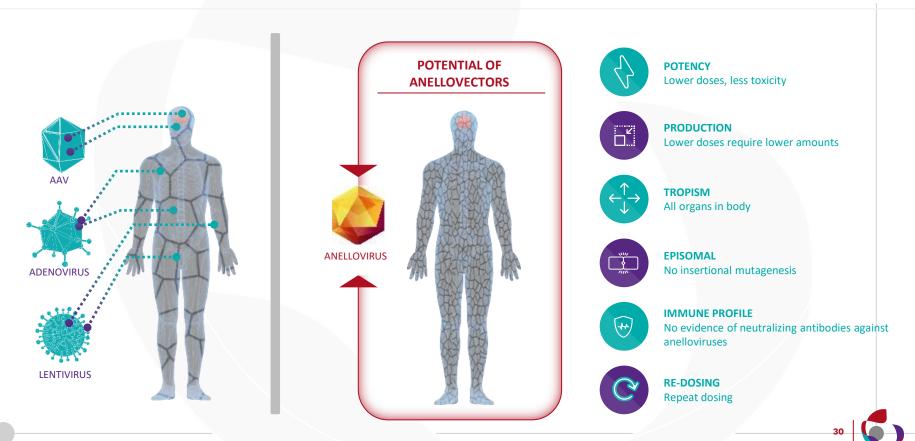
Discovery of anelloviruses with unprecedented websites number & diversity

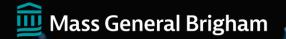
Abbreviations: AAV, adeno-associated virus; ANV, anellovirus; HPV, human papillomavirus; MDS, multidimensional scaling; ORF, open reading frame.


Anelloviruses have evolved and lived in harmony with us for millions¹ of years.

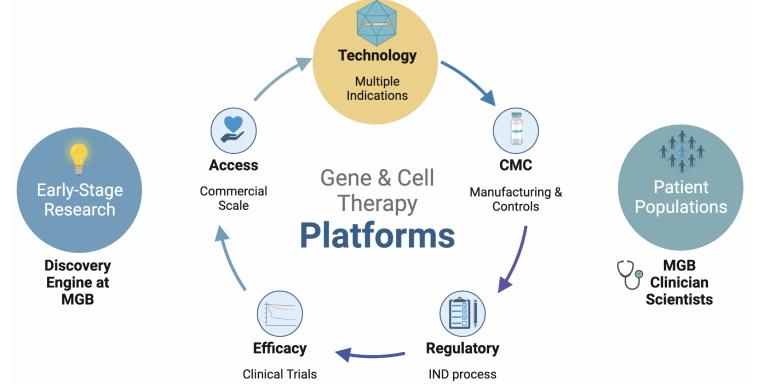
Anelloviruses intrinsic traits:
 Unprecedented diversity
 Ubiquitous biodistribution
 Natural immune evasion

1. Kaczorowska and van der Hoek, FEMS Microbiology Reviews, 2020.


Anellovector Platform



Gene Therapy: Promise of New Vector Platform



© 2020 Ring Therapeutics. All Rights Reserved. CONFIDENTIAL: Do not distribute or reproduce

Gene and Cell Therapy Institute (GCTI)

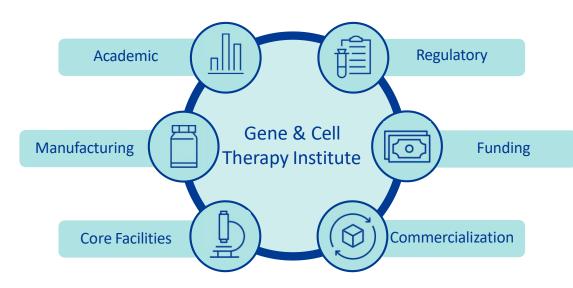
Academic Centers accelerators for GCT Programs

Why Academic Medical Institutes?

GCT is transforming the treatment paradigm

Potentially curative or preventative, one-time treatment that targets underlying genetic causes of disease

2-4x faster than traditional pharma, 3-5 years of clinical trials on small, disease-based population
Academic medical center-led, with close physician-researcher-patient collaborations


GCT success rates are typically higher than traditional pharma due to higher target specificity

Earlier detectable viability lowers investment risk and increases cost efficiency

Launched in 2022, MGB's Gene & Cell Therapy Institute has grown into a hub of innovation and collaboration

Integrated Team and Established Structure

Promising Areas of Focus

Novel glioblastoma gene therapy first-in-human trial

Pioneering Glaucoma cell replacement therapy strategy

Thank you

